Hall T	icket	Number:												Cod	le No	o.: 214	114
V		AVI COL .E. (Mech.														AD	
Time	e: 3 l	nours . Note:	Answe	er AL				es of			FIV	E from	Part-		ax. M	larks: 70)
					Par	t-A (10 ×	2 = .	20 M	arks))						
1.	Dif	ferentiate be	etweer	idea	al fluid	ds' ar	ıd 're	eal flu	uids'	alfi z							
2.	Wh	at is meant	by vaj	pour p	ressu	re of	a flui	id? G	dive i	ts sig	nifica	ince.					
3.	Def	ine local an	d con	vectiv	e acce	elerat	ions	in a f	fluid	flow.	0 (84)						
4.	Wh	What is the concept of 'stream tube' in fluid mechanics?															
5.	Wh	What do you understand by Impulse Momentum equation?															
6.		Calculate the velocity of water flow through a pipe, if the water rises by 1 m in the Pitot ube above the free surface of pipe (take Velocity coefficient as 0.98).															
7.	Wh	at are the fa	ctors	influe	ncing	the f	rictio	onal l	loss i	n pipe	e flov	v?					
8.	Wr	ite the Hage	n-Poi	seuill	e equa	ition	for la	amina	ar flo	w.							
9.	Dif	ferentiate b	etwee	n a lai	ninar	and t	urbu	lent l	bound	dary l	layer.						
10	. Wh	at is Magn	ıs Effe	ect?													
					Pa	rt-B	(5 ×	10 =	50 M	larks)						
11	. a)	A cylinder lubricated cylinder is the viscosi	pipe. noted	The o	elearan celera	nce b	etwe a rat	een the	he pi	pe an	nd cyl	linder i	s 2.5	x 10) ⁻³ cn	n. The	[5]
	b)	A horizont connected 15 cm. Fin	at the	two p	oints	A and	dBo	of the	pipe	show	vs a d						[5]
12	2. a)	List out the	e prop	erties	of 'V	eloci	ty po	tenti	al' ar	d 'St	tream	function	on'.				[4]
	b)	The veloci					is gi	ven 1	by φ	= 5	$(x^2 -$	y ²). C	Calcul	ate tl	he ve	elocity	[6]
13	3. a)	Derive Ber	moull	i's eq	uation	and	state	its as	ssum	ptions	s/limi	itations					[7]

b) An oil of specific gravity 0.7 is flowing through a pipe of 0.3 m diameter at the rate of

0.5 m³/sec. Find the head lost due to friction and power required to maintain the flow

b) Differentiate between Venturimeter and Orifice meter.

for a length of 1000 m. Take kinematic viscosity = 0.29 stokes.

14. a) Draw Moody's chart and explain its importance.

[3]

[4]

[6]

Code No.: 21414

15. a) Explain the effect of pressure gradient on boundary layer separation with a neat sketch. [6] b) Find the displacement thickness and the momentum thickness for the velocity [4] distribution in the boundary layer given $\frac{u}{U} = \frac{y}{\delta}$ where u is the velocity at distance 'y' from the plate and u = U at $y = \delta$ where δ is the boundary layer thickness. 16. a) With a neat sketch, explain Piezometer. [5] b) Write a brief notes on Reynold's Transport Theorem. [5] 17. Write short notes on any two of the following: a) Forces on a pipe bend [5] b) Upper and lower critical values of Reynold's number for flow in pipes [5] c) Drag and Lift co-efficients [5]
